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1. Introduction 

Technical inefficiency reflects the failure of some firms to obtain the maximum feasible 

output given the amount of inputs used. Its measurement is crucial to quantify the importance 

of poor performances in a productive activity. Unfortunately, measurement is not enough. In 

order to improve technical efficiency (TE), firms should be able to identify the sources of 

misperformances and the alternatives available to make better use of their resources. 

Therefore, the question to be answered is "how can a firm become efficient in practice?". The 

answer to this question depends on the sources of inefficiency. 

Some studies consider technical inefficiency as the result of a lack of motivation or effort, 

as suggested by Leibenstein (1966). Thus, the question of efficiency improvement is assessed 

within the framework of principal-agent contractual theory. In this line, Bogetoft (1994) 

suggests that efficiency improvements may be achieved introducing an appropriate incentive 

scheme to induce the desired (efficient) effort level from the agent. A different approach 

considers technical inefficiency as the result of a lack of knowledge or managerial ability 

(Farrell, 1957). Under this view, efficiency improvements may be achieved through learning 

processes, as is the case of management programs. Thus, the main difference between the two 

approaches is the assumption made about the motivation of the productive agents.  

This paper is grounded on the knowledge-based view of efficiency, which focuses on firms 

that are inefficient, but have the motivation needed to become efficient. The objective is to 

provide an insight in efficiency improvement through learning processes. We argue that, if 

knowledge is the main driver of inefficiency, firms should try to learn from those that are 

efficient. Then, we develop a method to identify the appropriate benchmark each firm should 

try to learn from.  

The paper is organized as follows. Section 2 explores how a firm can improve efficiency in 

practice. Section 3 reviews the current efficiency measures. In Section 4, the concept of input-

specific contraction is introduced. An empirical non-parametric model is presented in Section 

5. Finally, concluding remarks are presented. 

 

2. Efficiency Improvement in Practice 

Some common questions posed by inefficient farmers enrolled in farm management 

programs are How can I become efficient? or What am I doing wrong?. However, current 

measures of TE do not provide information of this kind. The implicit assumption in TE 
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studies is that inefficient firms should behave as those on the best practice frontier. But 

behavior has two components: how much the firms are doing and how they do it. Efficiency 

measures only inform in terms of “how much”. The firms on the frontier determine the input 

reduction an inefficient firm could achieve. However, if this inefficient firm reduces its input 

use but continues acting in the same manner as before the reduction, we would observe a firm 

that produces less output and is equally inefficient. 

We can illustrate this problem with an example. Assume two farmers with the same type of 

farm, which apply the same amount of fertilizer to one hectare of land. Farmer A applies the 

fertilizer at the appropriate period of the year while farmer B does not. Other things being 

equal, farmer A will produce a higher amount of output than farmer B and, therefore, our 

current efficiency measures will label farmer B as inefficient. After this finding, one might be 

prompted to conclude that farmer B could (should) reduce its input use and still produce the 

same amount of output. However, after downsizing, farmer B will still be applying fertilizer 

with bad timing and therefore he will still be inefficient.  

Obviously, the solution for the inefficient firm is to find out what it is doing wrong and 

then correct its mistakes. The question is how to do this in practice. A reasonable strategy 

would be that, after the firm is informed that it is inefficient, its manager visits some of the 

efficient firms to observe how they do things. This benchmarking procedure is common in 

farm management programs. A non-trivial question here is how to choose which of the 

efficient firms it should visit. Even though this is done in real practice in several ways, the 

purpose of this paper is to provide a method to identify this subset of most relevant firms to 

visit in a more objective way.  

It seems natural to think that an inefficient firm will prefer to visit the efficient firm that is 

most similar to it, rather than an efficient but very different firm. Research on 

interorganizational learning supports this idea. As Lane and Lubatkin (1998) put it "(...) the 

ability of a firm to learn from another firm (...) depends upon the similarity between the 

student and the teacher firms". The most similar the efficient firm, the easier it will be for the 

inefficient firm to detect its own mistakes and, therefore, to correct them. But to make this 

idea operative, we must find a definition of firm similarity. 

Most empirical studies of TE use radial measures to quantify efficiency. Thus, it may be 

argued that the most similar firm is the radial projection of the inefficient firm on the 

isoquant. Radiality seems to be a reasonable proxy for similarity, because all firms on the 

same ray share the same combination of inputs1. However, it is easy to imagine a situation in 
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which two firms sharing the same input proportions may be quite different. Furthermore, it 

has been noticed that radial measures impose a direction for improvement that does not take 

into account the information on input substitution possibilities that is available through the 

empirically constructed isoquant (Bogetoft and Hougaard, 1999). 

A better criterion for practical purposes may be proximity, which can be measured in terms 

of inputs. This practice would be more in the line of traditional cluster analysis, a technique 

that is typically used to find patterns of similarity among observations. While aware that this 

is not a scientific criterion, an inefficient firm could be more interested in visiting a firm that 

uses more or less the same quantities of inputs (it is in the same input cluster) than in visiting 

a firm that is using the same proportion of inputs but at a different scale. The literature on 

farm management provides some examples of the use of this criterion of similarity. For 

example, Lund and rum (1997) have developed a computerized efficiency analysis system, 

for management advisory purposes, that compares each firm with a reference group composed 

of the most similar firms in terms of absolute quantities of certain inputs. Dervaux, Kerstens, 

and Vanden Eeckaut (1998) suggest that a modified version of Färe's (1975) asymmetric 

efficiency measure, defined as the smallest input contraction needed to reach the isoquant, can 

be interpreted as “the minimal effort required to join the boundary of a technology”. 

Similarly, Frei and Harker (1999) have proposed a least norm distance measure to the 

production frontier, allowing innefficient firms to benchmark against those efficient firms that 

most closely resemble them. Although useful, a problem with this least norm distance is that 

it “is not invariant with respect to the scale of the units used for the inputs and/or outputs” 

(1999: p. 292). 

In this article, we go a step further, trying to provide an operative way to find the closest 

reference firm in the efficient subset of the isoquant using relative contractions of inputs and, 

thus, avoiding the units of measurement problem mentioned above. The comparison group on 

the efficient subset will be composed of efficient firms that share the largest number of 

similarities in the input endowments and, therefore, are easier to imitate by the inefficient 

firm. The idea is that the inefficient firm may learn more from visiting these firms than 

visiting any other efficient firms. To make this idea operative, we introduce the concept of 

input-specific contraction as a modified version of the single-factor efficiency measure, 

introduced by Kopp (1981). The input-specific contraction measure computes the sum of 

input contractions required to reach the efficient subset of the production frontier when the 

contraction to the isoquant is measured along a single input.  
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3. Measures of Technical Efficiency  

The technology can be characterized by the input requirement set, u u L( ), where 

L S N:    is a mapping from the output vector u 
S  into the set of input vectors x

N  

that allow to produce u. Throughout the paper, we will assume that L(u) satisfies the 

properties of convexity, free disposability of inputs and outputs and variable returns to scale. 

Koopmans (1951) defines an input-output vector (IOV) as technically efficient if, and only 

if, increasing any output or decreasing any input is possible only by decreasing some other 

output or increasing some other input. Based on the previous definition, technical efficiency 

measures evaluate the performance of a given IOV by comparison to the IOVs on the 

boundary of L(u).  

Two boundary sets are relevant for the measurement of TE. The input isoquant is defined 

as2: 

  Isoq L L L( ) : ( ) ( ), [ , )u x x u x uN        0 1  

and the efficient subset of the isoquant is defined as3: 

  Eff L L LN( ) : ( )  ,  ( )u x x u x x x u       

Radial measures of TE carry the comparison along a ray from the origin and are attractive 

because they maintain the input mix of the IOV onto its projection on the boundary of the 

input requirement set. Therefore, they have a direct interpretation in terms of proportional 

cost reduction. The Farrell (1957) radial index focuses on the maximum equiproportionate 

reduction in all the inputs that can be achieved holding constant the output vector, and is 

defined by: 

   


,)(:),( uxux LminF  

However, )(F  is not always consistent with Koopmans’ definition, because the 

comparison is done with respect to the isoquant and not with respect to the efficient subset. 

An IOV on the isoquant is considered efficient although it may remain slacks in some inputs.  

Non-radial measures of TE avoid this problem by restricting the comparison to the 

efficient subset. The Russell measure introduced by Färe and Lovell (1978) satisfies this 

property and is defined as: 

  R min
N

x x L n
nn

N

N N n( , ) : , , ( ) , [ , ]x u u   
















  1

1 1 0 1  

This measure shrinks the input vector not along a ray, but in coordinate directions until a 

(1) 

(3) 

(2) 

(4) 
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point in the efficient subset of the isoquant is reached. The difference between the two 

measures is illustrated in Figure 1.  

<<<<<<<<<<<FIGURE 1 ABOUT HERE>>>>>>>>>>>>> 

For unit E, the Farrell measure of efficiency is given by the ratio OH/OE. The comparison 

point on the isoquant (H) lies on the same ray of unit E, thus maintaining the proportions in 

the input mix. To compute the Russell measure, the comparison point must lie on the efficient 

subset (ABC). By construction, the reference point is A and the measure takes the value 

1/2(IG/IE + DA/DG), which represents the maximum average contraction that is feasible.  

The indexes discussed above are called by Kopp (1981) multiple-factor efficiency 

measures, as they encompass the efficiency of total factor use4. Kopp introduces the notion of 

single-factor efficiency measures as an attempt to understand the individual contribution of 

each input to inefficiency. The single-factor efficiency measure of input k is given by: 

  K min x x x Lk k k k N k
k

( , ) :( , , , , ) ( ) ,x u u   
  1    

Expression (5) gives the contraction in input k needed to reach the isoquant and can be 

interpreted as the lower bound in the efficiency with which that input is used. In Figure 1 the 

Kopp measure takes the value FB/FE for input X2 and IG/IE for input X1. It is worth noting 

that the comparison set is the isoquant and not necessarily the efficient subset.  

Single-factor efficiency measures are interesting because they focus on the contraction of 

the IOV to Isoq L(u) along a unique coordinate direction. The smallest of Kopp indexes 

reflects the input that needs the largest contraction to reach the isoquant. This smallest index 

is what Färe (1975) names input efficiency function. Symmetrically, the largest of Kopp 

indexes reflects the input that needs the smallest contraction and, therefore, requires the 

minimal effort to reach the isoquant (Dervaux, Kerstens, and Vanden Eeckaut, 1998).  

Bogetoft and Hougaard (1999) have proposed a measure that stresses the importance of 

selecting the benchmark on the isoquant. The so called “potential improvements index” 

selects the vector constructed after substracting from each input its largest possible reduction 

(the Kopp saving) as the one defining the reference direction to the efficient subset. The 

advantage of this measure is that the information about the shape of the isoquant is considered 

in the selection of the reference efficient point, as it is based on potential improvements in all 

inputs. However, the reference point on the production frontier is not the closest one. Frei and 

Harker (1999) have developed a procedure to compare against the closest efficient 

benchmark, which is based in computing the smallest norm to the production frontier. 

However, their measure is sensitive to the units of measurement used. In the next section we 

(5) 
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provide a way to overcome this problem by using input specific contractions instead of 

absolute input reductions.  

 

4. Input Specific Contraction to the Efficient Subset 

In Section 2, we reviewed various measures of TE that share the common feature of 

quantifying the relative proportions by which a firm could reduce its inputs. The magnitude of 

such reductions may be an important factor in designing the best strategy to achieve 

efficiency. In other words, the task of reducing inputs while maintaining output levels is not 

trivial and implies considerable efforts (if not, we would not observe inefficient firms). The 

easiest manner to achieve efficiency may consist in visiting similar firms that are efficient. 

Therefore, a procedure to identify the closest efficient firm can help the design of a plan 

towards efficiency achievement. 

 

Definition 1. We define the smallest contraction to the efficient subset as the minimum 

contraction in the inputs required to reach the efficient subset: 

  nLEffxxminC nNN

N

n n   
1,)(),,(:)1(),( 111




uux   

Expression (6) determines the shortest path to the efficient subset. For example, in Figure 

2, the minimum contraction A requires to reach the efficient subset is given by the ratio 

AB/AH=1-BH/AH, which implies a reduction only in X2. For unit D, the minimum 

contraction is given by the sum DE/DK+EF/EL, which implies a reduction in input X1 to 

reach the isoquant plus a slack reduction in input X2 to reach the efficient subset. Note that, 

for example, firm A can use two alternative reference points on the efficient subset, C and B, 

but B is closer to A than C. Therefore, firm A could prefer to visit B in order to improve its 

efficiency level. 

<<<<<<<<<FIGURE 2 ABOUT HERE>>>>>>>>>>> 

Unfortunately, the smallest contraction measure is not directly computable because, in 

general, there are many different paths to the efficient subset that must be compared. 

However, under the hypothesis of convexity of L(u), it can be computed indirectly. For this 

purpose, we introduce the concept of input-specific contraction, in which a specific input 

determines the contraction path.  

 

Definition 2. (Input specific contraction) The k-th input-specific contraction measures the 

contraction needed to reach the isoquant along the k-th axis. If the isoquant does not coincide 

(6) 
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with the efficient subset in the projection of the IOV, the measure considers the slacks in the 

rest of the inputs as additional contractions (to reach the efficient subset): 

 


NnLEffxx

LIsoqxxxmaxC

nNN

Nkk

N

n nk

,,11,)(),,(

)(),,,,(:)1(),(

11

11







  





u

uux
 

Figure 2 illustrates this concept. The input-specific contraction in X1 is DE/DK+EF/EL for 

unit D and AC/AJ for unit A. In the case of X2, the contraction is DG/DI for unit D and 

AB/AH for unit A. Note that in the first case we add the slack EF/EL for unit D. Graphically 

it is clear, for the two dimensions case, that the smallest contraction defined in (6) must 

coincide with the smallest input-specific contraction. This is due to the assumption of 

convexity of L(u). The distance to any point in the segment joining the two comparison points 

cannot be strictly smaller than either distance to these points. The same applies to the sum of 

contractions. For instance, the slope of the segment CB is less than one and, therefore, the 

closest point to A on the efficient subset is B. By convexity of L(u) any point on the efficient 

subset between C and B must be at least as far from A as the points in the segment CB.  

The analysis gets more complicated with more than 2 input dimensions (see Coelli, 1998). 

In this case there may be several efficient points that can be reached by slack contraction once 

the isoquant has been reached (for each input specific contraction). However, our N input 

specific contractions find the N reference points on the efficient subset that use the lowest 

possible quantity of each input (consuming no more quantity of the other inputs). By 

convexity, the part of the efficient subset that employs no larger quantities of any of the inputs 

than the unit evaluated must lie below the convex hull of these N reference points. An 

argument similar to the one outlined for the case of 2 dimensions shows that the smallest of 

those N measures is the shortest path to the efficient subset. 

 

Proposition 1. If L(u) is a convex set, the smallest contraction to the efficient subset is the 

smallest input-specific contraction5: 

  NnCminC n
n

...,,1,),(),(  uxux  

The measure proposed here differs from previous measures in significant ways. Its 

objective is not to find the largest feasible savings as the Farrell (1957), Färe (1975) or Färe 

and Lovell (1978) measures. Its objective is to find a relevant benchmark for efficiency 

improvement. For this purpose, Bogetoft and Hougaard (1999) have proposed to incorporate 

information about maximum feasible contractions in all inputs. Our proposed benchmark is 

(7) 

(8) 
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markedly different. We try to find the closest reference on the production frontier. Thus, we 

are concerned with the smallest contractions, as are Frei and Harker (1999). Therefore, as 

Proposition 1 shows, the measure proposed in Definition 1 is similar to the smallest 

contraction measure proposed by Dervaux, Kerstens, and Vanden Eeckaut (1998), with the 

important difference that our benchmark lies on the efficient subset of the isoquant. It also 

differs from Frei and Harker (1999) in that relative contractions are used instead of absolute 

quantities of inputs. 

 

5. Nonparametric Programming Model 

To simplify the notation, we define S and N as the sets of output and input labels 

respectively, and J as the set of productive units in the sample. The subscript i will denote the 

IOV that is evaluated and  the intensity vector, which represents the weights assigned to 

each unit j entered into the linear combination of units that define the efficient IOV. 

The technique of Data Envelopment Analysis (DEA) introduced by Charnes, Cooper, and 

Rhodes (1978) and extended by Banker, Charnes, and Cooper (1984) has been widely used to 

measure the Farrell index of technical efficiency7. The k-th single-factor measure of 

efficiency can be computed by solving a transformed version of the original DEA program. 

We must take the i-th IOV back to the isoquant along the k-th input. The DEA program must 

find the linear combination of observed IOVs that minimizes the consumption of input k, 

constrained to use no more of the rest of the inputs and to produce no less outputs than the i-th 

IOV. Expression (10) shows the linear program that solves this problem: 

 

min

s t u u s S

x x n N n k

x x

j J

k

j js is
j J

j jn in
j J

j jk k ik
j J

j
j J

j

 ,

. . ,

, ,

,







 





 

  





 















 1

0

  

However, there are two problems with the solution to this program. First, it may contain 

slacks in the inputs, which can be interpreted as additional feasible reductions. Second, even 

if we eliminate the slacks, some additional reductions may be feasible, because the efficient 

IOV used for comparison lies on the isoquant (not necessarily on the efficient subset). An 

alternative formulation that computes all feasible reductions is given by: 

(10) 
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min M

s t u u s S

x x n N

n N n k

j J

k n
n N
n k

j js is
j J

j jn n in
j J

n

j
j J

j

 ,

. . ,

,

, ,

,

 

 

 

  



 


















 



 







1

1

0

 

where M is a large enough scalar to force the program to identify input k as the one defining 

the path to the isoquant. The search for feasible reductions in the rest of the inputs starts after 

the isoquant is reached, taking the i-th IOV down to the efficient subset. However, the weight 

assigned to input k also implies that values of  k 1 are possible if they permit to obtain a 

lower k . Therefore, the constraints n1 are necessary to ensure that reductions in input k are 

not achieved at the small cost (in terms of the objective function) of increasing some other 

input. 

After computing  in (11), the input-specific contraction defined in (7) can be derived as: 

 



Nn

nkC )1(),( ii ux  

In empirical applications it can be interesting to decompose the measure in (12) in two 

terms: 

 





kn
Nn

nkkC )1()1(),( ii ux  

where the first term represents the contraction to the isoquant and the second term the sum of 

the slacks. 

 

6. Concluding remarks 

In many contexts, technical inefficiency can be interpreted as the result of a lack of knowledge 

about certain critical aspects of the productive activity. In these cases, efficiency improvements 

may be achieved if the inefficient firm is able to learn better production routines. Benchmarking 

is a common tool used by firms that want to improve their understanding of the most successful 

practices in their field. However, the literature on technical efficiency has been more concerned 

with the problems of measuring inefficiency than with the problem of selecting relevant efficient 

benchmarks to learn from. The model proposed in this article can be used to identify a relevant 

benchmark for each inefficient firm in a sample. For each input k, we first compute the 

(11) 

(12) 

(13) 
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contraction to the isoquant along that input axis and then we add the remaining slacks that lead to 

the efficient subset. We refer to this sum as the k-th input-specific contraction. We show that the 

smallest input-specific contraction measure reveals the most similar set of efficient firms that can 

serve as a reference for the inefficient firm. This information can be incorporated into 

management programs in order to advise about which efficient firms should each inefficient firm 

visit in order to learn better managerial practices. 
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Notes 

1. This radial notion of similarity has been used by Day, Lewin and Li (1995) to identify strategic groups in an 

industry. Using standard DEA, a firm is assigned to the strategic group defined by the firms in its comparison 

group (where inputs are strategies and output is a measure of performance). 

2.  For simplicity in the definitions, we will always assume that all the components of the IOVs are strictly 

positive. 

3. We use the standard notation x x  to denote that  , x x n Nn n   1 x x . 

4. More elaborated transformations of these measures are discussed in Zieschang (1984) and Rusell (1985). 

5. A formal proof is provided in the appendix. 

6. See Färe, Grosskopf, and Lovell (1994) for a discussion of this technique. 
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APPENDIX 

In this appendix we prove that, under the assumption of convexity of L(u),  the smallest 

contraction to the efficient subset is the smallest input-specific contraction. From Figure 2, it 

is clear that the smallest distance from A to the efficient subset must be the distance from A to 

a reference point in the part of the efficient subset below the segment CB, where C and B are 

the reference points for the measurement of the two input-specific contractions. This is the 

reason for introducing the constraints n1 n in the definition of (6). In the general case of N 

inputs, there are N reference points (x1,...,xN) one for each input-specific contraction and the 

smallest contraction must take a reference point in the part of the efficient subset below the 

convex hull of (x1,...,xN), to be using no larger quantities of any input. Note that this must be 

true if L(u) is a convex set, because in this case the convex hull of (x1,...,xN), CB in Figure 2, 

belongs to L(u) and therefore the efficient subset lies below (or on) it. 

Thus, it suffices to prove that the contraction from the input vector (x0) to any point on the 

convex hull of (x1,...,xN) is bigger or equal to one of the input-specific contractions. The ith 

input-specific contraction would be: 
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Take any arbitrary point ~x  on the convex hull of (x1,...,xN): 
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The contraction distance from x0 to ~x  is: 
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Claim: iCC 
~

  for some i=1...N. 

Proof: The proof is by contradiction. Suppose iCC i 
~

. This implies: 
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simplifying and multiplying both sides by i,and adding up over i, we get: 
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and this implies  i  1, which is a contradiction, because as we know  i  1. This 

completes the proof■  
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Figure 1. Current measures of technical efficiency 
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Figure 2. The smallest contraction to the efficient subset. 


